Нетрадиционные и возобновляемые источники энергии мти. Нетрадиционные (возобновляемые) источники энергии. Заочной формы обучения

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

На современном этапе развития цивилизации экономический рост в любой стране самым тесным образом связан с функционированием топливно-энергетического комплекса. При этом наиболее конкурентоспособными являются те страны, где энергетические ресурсы используются в максимальном объеме и с высокой степенью эффективности. Экономика России базируется на невозобновляемых углеводородных топливно-энергетических ресурсах, причем, в большей степени, чем в большинстве промышленно развитых стран мира

Разведанные запасы традиционных углеводородных ресурсов в России пока позволяют обеспечивать текущие потребности национальной экономики и получать существенные доходы от экспорта энергоносителей. В то же время с каждым годом наблюдается ухудшение горно-геологических условий добычи горючих полезных ископаемых. С начала 90-х годов прошлого века восполнение запасов углеводородных ресурсов отстает от темпов роста их добычи.

В перспективе будут постоянно возрастать требования к защите окружающей среды при сжигании традиционных углеводородных ресурсов. Снижение энергоемкости российской экономики в отличие от ведущих промышленно развитых стран не являлось следствием комплексного проведения энергосберегающих мероприятий. В данном случае сыграли свою роль факторы, связанные со спадом производства, глобальным потеплением климата, повышением доли природного газа в энергетическом балансе и изменением структуры производства ВВП в сторону увеличения доли производства услуг. Производство услуг обычно менее энергоемко по сравнению с производством товаров.

Если разрыв в уровне энергоемкости ВВП будет сохраняться, то это несомненно окажет негативное воздействие на конкурентоспособность российских товаров на мировом рынке.

Уже в ближайшей перспективе все большую часть прироста национальных потребностей России в топливе и энергии необходимо будет обеспечивать за счет мероприятий по энергосбережению. В основных положениях Энергетической стратегии России до 2020 года энергосбережение предполагается в основном осуществлять за счет организационных и технологических мероприятий, направленных на более эффективное использование традиционных видов топливно-энергетических ресурсов.

Следует, однако, подчеркнуть, что энергосбережение - это не только внедрение технологий, позволяющих увеличить эффективность использования традиционных энергоносителей, но также и диверсификация энергобаланса за счет использования альтернативных источников энергии. К сожалению, последнему аспекту в стратегии энергосбережения уделяется недостаточно внимания.

В стратегическом плане среди альтернативных источников энергии наиболее важную роль будут играть возобновляемые источники энергии (ВИЭ). Среди них особый интерес представляют нетрадиционные возобновляемые источники энергии (НВИЭ): энергия солнца, ветра, тепла земли, малых рек, океана, биомассы и торфа.

В данном реферате мы рассмотрим возобновляемые источники энергии, их достоинства и недостатки, и перспективы использования ВИЭ в России.

Глава 1. Характеристики возобновляемых источников энергии и основные аспекты их использования в России

1.1 Возобновляемые источники энергии

Это виды энергии, непрерывно возобновляемые в биосфере Земли. К ним относится энергия солнца, ветра, воды (в том числе сточных вод), исключая применения данной энергии на гидроаккумулирующих электроэнергетических станциях. Энергия приливов, волн водных объектов, в том числе водоемов, рек, морей, океанов. Геотермальная энергия с использованием природных подземных теплоносителей. Низкопотенциальная тепловая энергия земли, воздуха, воды с применением особых теплоносителей. Биомасса, включающая в себя специально выращенные для получения энергии растения, в том числе деревья, а также отходы производства и потребления, за исключением отходов, полученных в процессе использования углеводородного сырья и топлива. А также биогаз; газ, выделяемый отходами производства и потребления на свалках таких отходов; газ, образующийся на угольных разработках.

Теоретически возможна и энергетика, основанная на использовании энергии волн, морских течений, теплового градиента океанов (ГЭС установленной мощностью более 25 МВт). Но пока она не получила распространения.

Способность источников энергии возобновляться не означает, что изобретен вечный двигатель. Возобновляемые источники энергии (ВИЭ) используют энергию солнца, тепла, земных недр, вращения Земли. Если солнце погаснет, то Земля остынет, и ВИЭ не будут функционировать.

1.2 Преимущества возобновляемых источников энергии в сравнении с традиционными

Традиционная энергетика основана на применении ископаемого топлива, запасы которого ограничены. Она зависит от величины поставок и уровня цен на него, конъюнктуры рынка.

Возобновляемая энергетика базируется на самых разных природных ресурсах, что позволяет беречь невозобновляемые источники и использовать их в других отраслях экономики, а также сохранить для будущих поколений экологически чистую энергию.

Независимость ВИЭ от топлива обеспечивает энергетическую безопасность страны и стабильность цен на электроэнергию

ВИЭ экологично чисты: при их работе практически нет отходов, выброса загрязняющих веществ в атмосферу или водоемы. Отсутствуют экологические издержки, связанные с добычей, переработкой и транспортировкой ископаемого топлива.

В большинстве случаев ВИЭ-электростанции легко автоматизируются и могут работать без прямого участия человека.

В технологиях возобновляемой энергетики реализуются новейшие достижения многих научных направлений и отраслей: метеорологии, аэродинамики, электроэнергетики, теплоэнергетики, генераторо- и турбостроения, микроэлектроники, силовой электроники, нанотехнологий, материаловедения и т. д. Развитие наукоемких технологий позволяет создавать дополнительные рабочие места за счет сохранения и расширения научной, производственной и эксплуатационной инфраструктуры энергетики, а также экспорта наукоемкого оборудования.

1.3 Наиболее распространенные возобновляемые источники энергии

И в России, и в мире - это гидроэнергетика. Около 20% мировой выработки электроэнергии приходится на ГЭС.

Активно развивается мировая ветроэнергетика: суммарные мощности ветрогенераторов удваиваются каждые четыре года, составляя более 150 000 МВт. Во многих странах ветроэнергетика занимает прочные позиции. Так, в Дании более 20% электроэнергии вырабатывается энергией ветра.

Доля солнечной энергетики относительно небольшая (около 0,1% мирового производства электроэнергии), но имеет положительную динамику роста.

Геотермальная энергетика имеет важное местное значение. В частности, в Исландии такие электростанции вырабатывают около 25% электроэнергии.

Приливная энергетика пока не получила значительного развития и представлена несколькими пилотными проектами.

1.4 Состояние возобновляемой энергетики в России

Этот вид энергетики представлен в России главным образом крупными гидроэлектростанциями, обеспечивающими около 19% производства электроэнергии в стране. Другие виды ВИЭ в России пока заметны слабо, хотя в некоторых регионах, например на Камчатке и Курильских островах, они имеют существенное значение в местных энергосистемах. Суммарная мощность малых гидроэлектростанций порядка 250 МВт, геотермальных электростанций - около 80 МВт. Ветроэнергетика позиционируется несколькими пилотными проектами общей мощностью менее 13 МВт. Приливная энергетика ограничена возможностями экспериментальной Кислогубской ПЭС.

Глава 2. Обзор возобновляемых источников энергии

2.1 Энергия солнца

Солнечная энергетика -- использование солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и в перспективе может стать экологически чистой, то есть не производящей вредных отходов

2.1.1 Способы получения электричества и тепла из солнечного излучения

Получение электроэнергии с помощью фотоэлементов

Преобразование энергии в фотоэлементах основано на фотовольтаическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.

Неоднородность структуры фотоэлементов может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны - энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов.Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств фотоэлементов, среди которых наиболее важную роль играет фотопроводимость. Она обусловлена явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом.

гелиотермальная энергетика - нагревание поверхности, поглощающей солнечные лучи и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах).

Солнечный водонагреватель

Устройство состоит из короба со змеевиком, бака холодной воды, бака-аккумулятора и труб. Короб стационарно устанавливается под углом 30-50° с ориентацией на южную сторону. Холодная, более тяжелая, вода постоянно поступает в нижнюю часть короба, там она нагревается и, вытесненная холодной водой, поступает в бак-аккумулятор. Она может быть использована для отопления, для душа либо для других бытовых нужд. Дневная производительность на широте 50° примерно равна 2 кВт/ч с квадратного метра. Температура воды в баке-аккумуляторе достигает 60-70°. КПД установки - 40%.

“С олнечный парус” -- приспособление, использующее давление солнечного светана зеркальную поверхность для приведения в движение космического аппарата.

Давление солнечного света чрезвычайно мало (на Земле -- около 5·10 -6 Н/м) и уменьшается пропорционально квадрату расстояния от Солнца. Но солнечный парус не требует ракетного топлива, и может действовать в течение длительного периода времени, поэтому в некоторых случаях его использование может быть привлекательно. Эффект солнечного паруса использовался несколько раз для проведения малых коррекций орбиты космических аппаратов, в роли паруса использовались солнечные батареи или радиаторы системы терморегуляции. Однако на сегодняшний день ни один из космических аппаратов не использовал солнечный парус в качестве основного двигателя.

Термовоздушные электростанции (преобразование солнечной энергию в энергию воздушного потока, направляемого на турбогенератор).

Солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием). Преимущество -- запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.

2.1.2 Практическое использование солнечной энергии

a ) Солнечные коллекторы-концентраторы

Солнечный коллектор -- устройство для сбора энергии Солнца, переносимой видимым светом и ближним инфракрасным излучением. Солнечные коллекторы применяются для отопления промышленных и бытовых помещений, для горячего водоснабжения производственных процессов и бытовых нужд. Наибольшее количество производственных процессов, в которых используется тёплая и горячая вода (30--90°C), проходят в пищевой и текстильной промышленности, которые таким образом имеют самый высокий потенциал для использования солнечных коллекторов. В Европе в 2000 г. общая площадь солнечных коллекторов составляла 14,89 млн. мІ, а во всём мире -- 71,341 млн. мІ. Солнечные коллекторы -- концентраторы могут производить электроэнергию с помощью фотоэлектрических элементов

б ) Параболоцилиндрические концентраторы

Параболоцилиндрические концентраторы имеют форму параболы, протянутую вдоль прямой. Параболоцилиндрический зеркальный концентратор фокусирует солнечное излучение в линию и может обеспечить его стократную концентрацию. В фокусе параболы размещается трубка с теплоносителем (масло), или фотоэлектрический элемент. Масло нагревается в трубке до температуры 300--390°C.

Параболоцилиндрические зеркала изготовляют длиной до 50 метров. Зеркала ориентируют по оси север--юг, и располагают рядами через несколько метров. Теплоноситель поступает в тепловой аккумулятор для дальнейшей выработки электроэнергии паротурбинным генератором. С 1984 по 1991 г. в Калифорнии было построено девять электростанций из параболоцилиндрических концентраторов общей мощностью 354 МВт. Стоимость электроэнергии составляла около $0,12 за кВт*ч. Германская компания Solar Millennium AG строит во Внутренней Монголии (Китай) солнечную электростанцию. Общая мощность электростанции увеличится до 1000 МВт к 2020 году. Мощность первой очереди составит 50 МВт. В июне 2006 г. в Испании была построена первая термальная солнечная электростанция мощностью 50 МВт. В Испании к 2010 году может быть построено 500 МВт электростанций с параболоцилиндрическими концентраторами. Всемирный банк финансирует строительство подобных электростанций в Мексике, Марокко, Алжире, Египте и Иране. Концентрация солнечного излучения позволяет сократить размеры фотоэлектрического элемента. Но при этом снижается его КПД, и требуется некая система охлаждения.

c ) Параболические концентраторы

Параболические концентраторы имеют форму спутниковой тарелки. Параболический отражатель управляется по двум координатам при слежении за солнцем. Энергия солнца фокусируется на небольшой площади. Зеркала отражают около 92% падающего на них солнечного излучения. В фокусе отражателя на кронштейне закреплён двигатель Стирлинга, или фотоэлектрические элементы. Двигатель Стирлинга располагается таким образом, чтобы область нагрева находилась в фокусе отражателя. В качестве рабочего тела двигателя Стирлинга используется, как правило, водород, или гелий.

В феврале 2008 года Национальная лаборатория Sandia достигла эффективности 31,25% в установке, состоящей из параболического концентратора и двигателя Стирлинга.

В настоящее время строятся установки с параболическими концентраторами мощностью 9--25 кВт. Разрабатываются бытовые установки мощностью 3 кВт. КПД подобных систем около 22--24%, что выше, чем у фотоэлектрических элементов. Коллекторы производятся из обычных материалов: сталь, медь, алюминий, и т. д. без использования кремния солнечной чистоты. В металлургии используется так называемый «металлургический кремний» чистотой 98%. Для производства фотоэлектрических элементов используется кремний «солнечной чистоты», или «солнечной градации» с чистотой 99,9999%.В 2001 году стоимость электроэнергии, полученной в солнечных коллекторах составляла $0,09--0,12 за кВт*ч. Департамент энергетики США прогнозирует, что стоимость электроэнергии, производимой солнечными концентраторами снизится до $0,04--0,05 к 2015--2020 г. Компания Stirling Solar Energy разрабатывает солнечные коллекторы крупных размеров -- до 150 кВт с двигателями Стирлинга. Компания строит в южной Калифорнии крупнейшую в мире солнечную электростанцию. До 2010 г. будет построено 20 тыс. параболических коллекторов диаметром 11 метров. Суммарная мощность электростанции может быть увеличена до 850 МВт.

д ) Освещение зданий с помощью световых колодцев

Световой колодец (англ. lighttubeorlightpipe) -- оборудование для освещения помещений при помощи естественного солнечного света. Световой колодец представляет cобой трубу, передающую солнечный свет с минимальными потерями. Простейший вариант светового колодца -- отверстие в потолке. Солнечные колодцы применяются для освещения как промышленных, так и жилых зданий в дневное время суток. Могут применяться в больших промышленных зданиях: складах, цехах, подземных помещениях и т. д.

2.1.3 Достоинства и недостатки солнечной энергетики

Достоинства

*Общедоступность и неисчерпаемость источника.

*Теоретически, полная безопасность для окружающей среды (однако в настоящее время в производстве фотоэлементов и в них самих используются вредные вещества). Существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Недостатки

*Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках.

*Дороговизна солнечных фотоэлементов. Вероятно, с развитием технологии этот недостаток преодолеют. В 1990--2005 гг. цены на фотоэлементы снижались в среднем на 4% в год.

*Недостаточный КПД солнечных элементов (вероятно, будет вскоре увеличен).

*Поверхность фотопанелей нужно очищать от пыли и других загрязнений. При их площади в несколько квадратных километров это может вызвать затруднения.

*Эффективность фотоэлектрических элементов заметно падает при их нагреве, поэтому возникает необходимость в установке систем охлаждения, обычно водяных.

*Через 30 лет эксплуатации эффективность фотоэлектрических элементов начинает снижаться.

Вывод

Сегодня солнечная энергетика широко применяется в случаях, когда малодоступность других источников энергии в совокупности с изобилием солнечного излучения оправдывает её экономически. В России солнечная энергетика существует только в виде небольших установок автономного энергоснабжения, не подключенных к энергосистеме и применяемых частными лицами и небольшими организациями.

2.2 Ветровая энергия

Ветер -- поток воздуха, движущийся относительно земной поверхности со скоростью свыше 0,6 м/с.

Ветры над большими площадями образуют обширные воздушные течения -- муссоны, пассаты, из которых слагается общая и местная циркуляция атмосферы.

Ветроэнергетика -- отрасль энергетики, специализирующаяся на использовании энергии ветра -- кинетической энергии воздушных масс в атмосфере. Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца.

2.2.1 Получение энергии с помощью ветрогенераторов

Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) -- устройство для преобразования кинетической энергии ветра в электрическую.

Ветрогенераторы можно разделить на две категории: промышленные и домашние (для частного использования). Промышленные устанавливаются государством или крупными энергетическими корпорациями. Как правило, их объединяют в сети, в результате получается ветряная электростанция. Её основное отличие от традиционных (тепловых, атомных) -- полное отсутствие как сырья, так и отходов. Единственное важное требование для ВЭС -- высокий среднегодовой уровень ветра. Мощность современных ветрогенераторов достигает 6 МВт.

2.2.2Типы ветродвигателей

Большинство типов ветродвигателей известны так давно, что история умалчивает имена их изобретателей. Основные разновидности ветроагрегатовделятся на две группы:

1. ветродвигатели с горизонтальной осью вращения (крыльчатые) (2-5);

2. ветродвигатели с вертикальной осью вращения (карусельные: лопастные (1) и ортогональные (6)).

Типы крыльчатых ветродвигателей отличаются только количеством лопастей.

a ) Крыльчатые

Для крыльчатых ветродвигателей, наибольшая эффективность которых достигается при действии потока воздуха перпендикулярно к плоскости вращения лопастейкрыльев, требуется устройство автоматического поворота оси вращения. С этой целью применяют крыло-стабилизатор. Распространение крыльчатых ветроагрегатов объясняется величиной скорости их вращения. Они могут непосредственно соединяться с генератором электрического тока без мультипликатора. Скорость вращения крыльчатых ветродвигателей обратно пропорциональна количеству крыльев, поэтому агрегаты с количеством лопастей больше трех практически не используются.

б ) Карусельные

Различие в аэродинамике дает карусельным установкам преимущество в сравнении с традиционными ветряками. При увеличении скорости ветра они быстро наращивают силу тяги, после чего скорость вращения стабилизируется. Карусельные ветродвигатели тихоходны и это позволяет использовать простые электрические схемы, например, с асинхронным генератором, без риска потерпеть аварию при случайном порыве ветра. Тихоходность выдвигает одно ограничивающее требование - использование многополюсного генератора работающего на малых оборотах. Такие генераторы не имеют широкого распространения, а использование мультипликаторов - повышающий редуктор не эффективно из-за низкого КПД последних. Еще более важным преимуществом карусельной конструкции стала ее способность без дополнительных ухищрений следить за тем «откуда дует ветер», что весьма существенно для приземных рыскающих потоков. Ветродвигатели подобного типа строятся в США, Японии, Англии, ФРГ, Канаде. Карусельный лопастный ветродвигатель наиболее прост в эксплуатации. Его конструкция обеспечивает максимальный момент при запуске ветродвигателя и автоматическое саморегулирование максимальной скорости вращения в процессе работы. С увеличением нагрузки уменьшается скорость вращения и возрастает вращающий момент вплоть до полной остановки.

c ) Ортогональные

Ортогональные ветроагрегаты, как полагают специалисты, перспективны для большой энергетики. Сегодня перед ветропоклонниками ортогональных конструкций стоят определенные трудности. Среди них, в частности, проблема запуска. В ортогональных установках используется тот же профиль крыла, что и в дозвуковом самолете. Самолет, прежде чем «опереться» на подъемную силу крыла, должен разбежаться. Так же обстоит дело и в случае с ортогональной установкой. Сначала к ней нужно подвести энергию - раскрутить и довести до определенных аэродинамических параметров, а уже потом она сама перейдет из режима двигателя в режим генератора.

Отбор мощности начинается при скорости ветра около 5 м/с, а номинальная мощность достигается при скорости 14-16 м/с. Предварительные расчеты ветроустановок предусматривают их использование в диапазоне от 50 до 20 000 кВт. В реалистичной установке мощностью 2000 кВт диаметр кольца, по которому движутся крылья, составит около 80 метров. У мощного ветродвигателя большие размеры. Однако можно обойтись и малыми - взять числом, а не размером. Снабдив каждый электрогенератор отдельным преобразователем можно просуммировать выходную мощность вырабатываемую генераторами. В этом случае повышается надежность и живучесть ветроустановки.

2.2.3 Достоинства и недостатки ветрогенераторов

Достоинства

Экологически-чистый вид энергии

Эргономика

Возобновимая энергия

Ветровая энергетика - лучшее решение для труднодоступных мест.

Недостатки

Нестабильность

Относительно невысокий выход электроэнергии

Высокая стоимость

Природные условия

Шумовое загрязнение

Вывод

Ветроэнергетика является наиболее развитой сферой практического использования природных возобновляемых энергоресурсов. Мировыми лидерами в ветроэнергетике являются США, Германия, Нидерланды, Дания, Индия. В настоящее время в России возникли новые организации, занимающиеся ветроэнергетикой, постепенно налаживается сотрудничество с зарубежными партнерами.

В России, по мнению экспертов, уникальное сочетание благоприятных факторов для развития ветроэнергетики:

Обширная территория;

Богатый и хорошо изученный потенциал ветра (127 ТВтч);

Большие объёмы энергопотребления, связанные с климатическими условиями и структурой экономики.

В настоящее время, прорабатывается и реализуется целый ряд проектов строительства ветроэнергетических станций (ВЭС), мощностью чаще всего от 100 до 300 МВт каждая, практически по всей территории страны, хотя большая часть сконцентрирована на северо-западе и юге европейской части России: Ленинградская область; Псковская область; Ростовская область и Северный Кавказ (Порт Кавказ, Анапа, Темрюк, Карачаево-Черкесия); Оренбург; Остров Русский в Приморье.

Всего в России насчитывается 20-25 проектов ВЭС в разной степени продвижения.

электричество солнце ветер биомасса

2.3 Геотермальная энергия

Геотермальная энергетика -- производство электроэнергии, а также тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли. Обычно относится к альтернативным источникам энергии, возобновимым энергетическим ресурсам.

Тепловая энергия недр образуется за счет расщепления радионуклидов в середине планеты. Этот экологически чистый и постоянно обновляемый источник энергии может быть использован в регионах с вулканическими проявлениями и геологическими аномалиями, когда вода вблизи от поверхности земли нагревается до температуры кипения, в результате чего в виде водяного пара может подаваться на турбины для производства тока. Горячая вода естественных источников (гейзеров) может быть использована непосредственно.

Однако тепло Земли очень "рассеянно", и в большинстве районов мира человеком может использоваться с выгодой только очень небольшая часть энергии. Из них пригодные для использования геотермальные ресурсы составляют около 1% общей теплоемкости верхней 10-километровой толщи земной коры.

Источники геотермальной энергии

по классификации Международного энергетического агентства делятся на 5 типов:

Месторождения геотермального сухого пара - сравнительно легко разрабатываются, но довольно редки; тем не менее, половина всех действующих в мире ГеоТЭС использует тепло этих источников;

Источники влажного пара (смеси горячей воды и пара) - встречаются чаще, но при их освоении приходится решать вопросы предотвращения коррозии оборудования ГеоТЭС и загрязнения окружающей среды (удаление конденсата из-за высокой степени его засоленности);

Месторождения геотермальной воды (содержат горячую воду или пар и воду) - представляют собой так называемые геотермальные резервуары, которые образуются в результате наполнения подземных полостей водой атмосферных осадков, нагреваемой близко лежащей магмой;

Сухие горячие скальные породы, разогретые магмой (на глубине 2 км и более) - их запасы энергии наиболее велики;

Магма, представляющая собой нагретые до 1300 °С расплавленные горные породы.

Опыт, накопленный различными странами (в том числе и Россией), относится в основном к использованию природного пара и термальных вод, которые остаются пока наиболее реальной базой геотермальной энергетики. Однако ее крупномасштабное развитие в будущем возможно лишь при освоении петрогеотермальных ресурсов, т. е. тепловой энергии горячих горных пород, температура которых на глубине 3-5 км обычно превышает 100°С.

Для использования геотермальной энергии используют высокотемпературные геотермальные энергетические и тепловые станции (ГеоЭС) и низкотемпературные тепловые насосы (ТН).

2.3.1 Геотермальные электростанции

Способы использования геотермальной энергии

Существует два основных способа использования геотермальной энергии: прямое использование тепла и производство электроэнергии. Прямое использование тепла является наиболее простым и поэтому наиболее распространенным способом. Практика прямого использования тепла широко распространенна в высоких широтах на границах тектонических плит, например в Исландии и Японии. Водопровод в таких случаях монтируется непосредственно в глубинные скважины. Получаемая горячая вода применяется для подогрева дорог, сушки одежды и обогрева теплиц и жилых строений. Способ производства электричества из геотермальной энергии очень похож на способ прямого использования. Единственным отличием является необходимость в более высокой температуре (более 150 0 С).

Принципы работы

В настоящее время существует три схемы производства электроэнергии с использованием гидротермальных ресурсов: прямая с использованием сухого пара, непрямая с использованием водяного пара и смешанная схема производства (бинарный цикл). Тип преобразования зависит от состояния среды (пар или вода) и ее температуры. Первыми были освоены электростанции на сухом пару. Для производства электроэнергии на них пар, поступающий из скважины, пропускается непосредственно через турбину/генератор. Электростанции с непрямым типом производства электроэнергии на сегодняшний день являются самыми распространенными. Они используют горячие подземные воды (температурой до 182 0 С) которая закачивается при высоком давлении в генераторные установки на поверхности. Геотермальные электростанции со смешанной схемой производства отличаются от двух предыдущих типов геотермальных электростанций тем, что пар и вода никогда не вступают в непосредственный контакт с турбиной/генератором.

Геотермальные электростанции, работающие на сухом пару

Паровые электростанции работают преимущественно на гидротермальном пару. Пар поступает непосредственно в турбину, которая питает генератор, производящий электроэнергию. Использование пара позволяет отказаться от сжигания ископаемого топлива (также отпадает необходимость в транспортировке и хранении топлива). Это старейшие геотермальные электростанции. Первая такая электростанция была построена в Лардерелло (Италия) в 1904 году, она действует и в настоящее время. Паровая технология используется на электростанции «Гейзерс» в Северной Калифорнии - это самая крупная геотермальная электростанция в мире.

Геотермальные электростанции на парогидротермах

Для производства электричества на таких заводах используются перегретые гидротермы (температура выше 182°С). Гидротермальный раствор нагнетается в испаритель для снижения давления, из-за этого часть раствора очень быстро выпаривается. Полученный пар приводит в действие турбину. Если в резервуаре остается жидкость, то ее можно выпарить в следующем испарителе для получения еще большей мощности.

Геотермальные электростанции с бинарным циклом производства электроэнергии

Большинство геотермальных районов содержат воду умеренных температур (ниже 200 0 С). На электростанциях с бинарным циклом производства эта вода используется для получения энергии. Горячая геотермальные вода и вторая, дополнительная жидкость с более низкой точкой кипения, чем у воды, пропускаются через теплообменник. Тепло геотермальной воды выпаривает вторую жидкость, пары которой приводят в действие турбины. Так как это замкнутая система, выбросы в атмосферу практически отсутствуют. Воды умеренной температуры являются наиболее распространенным геотермальным ресурсом, поэтому большинство геотермальных электростанций будущего будут работать на этом принципе.

2.3.2 Тепловые насосы

Одним их приоритетных направлений развития альтернативной энергетики в мире является освоение низкопотенциальной энергии Земли (тепла грунта, грунтовых вод и поверхностных водоемов, аккумулированное в поверхностных слоях земной коры).

Низкопотенциальные геотермальные ресурсы (НГР) могут использоваться для обеспечения тепло- и хладоснабжения (кондиционирования), горячего водоснабжения зданий и сооружений всех типов, а также энергоснабжения технологических процессов. Технология их освоения заключается в использовании систем извлечения энергии, ее обработки и доставки теплоносителя к потребителю. Главным компонентом подобных систем являются геотермальные тепловые насосы (ГТН).

Геотермальные тепловые насосы представляют собой устройства, осуществляющие обратный термодинамический цикл, благодаря чему низкопотенциальная энергия переносится на более высокий уровень.

Помимо геотермального тепла, источником энергии для тепловых насосов может служить тепло сточных и оборотных вод, что позволяет параллельно решать проблему эксплуатации вторичных энергоносителей.

На сегодняшний день используются парокомпрессионные геотермальные тепловые насосы (ПТН), работающие на хладонах, и адбсорционные геотермальные тепловые насосы (АТН), в которых рабочими веществами выступают вода и водный раствор бромистого лития. Однако, в связи с меньшей эффективностью и сложностью конструкции, АТН не получили распространения.

Принцип работы теплового насоса

Тепловой насос - это устройство, которое работает по принципу обратной холодильной машины, передавая тепло от низкотемпературного источника к среде с более высокой температурой, например системе отопления вашего дома.

Каждая теплонасосная система имеет следующие основные компоненты:

Бак-аккумулятор - теплоизолированная ёмкость для воды, предназначена для накопления горячей воды, с целью выравнивания тепловых нагрузок системы отопления и горячего водоснабжения, а также увеличивает срок работы теплового насоса.

Первичный грунтовый контур - закрытая циркуляционная система, которая состоит из испарителя (теплового насоса), циркуляционного насоса грунтового контура, трубопроводов, и служит для передачи тепла от грунта к тепловому насосу.

Вторичный грунтовый контур - закрытая система, которая состоит с конденсатора (теплового насоса), циркуляционного насоса, трубопроводов, и служит для передачи тепла от теплового насоса к системе отопления в доме.

Принцип работы теплового насоса похож к работе обыкновенного холодильника, только наоборот. Холодильник отбирает тепло от пищевых продуктов и переносит его наружу. Тепловой насос переносит тепло, накопленное в почве, земле, водоеме, подземных водах или воздухе, в Ваш дом. Как и холодильник, этот энергоэффективный теплогенератор имеет следующие основные элементы:

Конденсатор (теплообменник, в котором происходит передача тепла от хладагента к элементам системы отопления помещения: низкотемпературным радиаторам, фанкойлам, теплому полу);

Дроссель (устройство, которое служит для снижения давления, температуры и, как следствие, замыкания теплофикационного цикла в тепловом насосе);

Испаритель (теплообменник, в котором происходит отбор тепла от низкотемпературного источника к тепловому насосу);

Компрессор (устройство, в которое повышает давление и температуру паров хладагента).

Виды теплосъема тепловым насосам

1) Земляной горизонтальный контур

Использует энергию, накопленную на поверхности земли (глубина от 1м до 2,5 м). Летом Тепловой насос забирает лишнее тепло из дома и переносит его под землю. Зимой Тепловой насос забирает накопленное за лето тепло и отдаёт обратно в дом

2) Земляной вертикальный контур

Использует энергию, накопленную в глубине земли (глубина 30-200 м). Бурится вертикальная скважина и в неё опускается замкнутая труба, по которому течёт теплоноситель. Тепло уносится грунтовыми водами летом и подается зимой.

3) Подземные воды

Использует энергию, грунтовой воды.Грунтовые воды круглогодично имеют температуру +5+12 С.Даже в самый сильный мороз Вы получите «бездонный» источник тепла, а летом - приятную прохладу

4) Энергия водоёма

Использует энергию, накопленную в летний период водоёма. Энергия водоёма имеет зимой температуру +3 +5 С. Даже в самый сильный мороз Вы получите «бездонный» источник тепла, а летом - приятную прохладу.

Преимущества и недостатки теплового насоса

Преимущества

Высокая экономичность.

Не требует постоянного сервисного обслуживани.

Длительный срок эксплуатации (до 50 лет).

Экологически чистая и безопасная систем.

Возможность использования в одной установке нескольких систем (отопление, горячее водоснабжение, кондиционирование.

Низкий уровень шумов.

Срок окупаемости установки от 3-х до 5-ти лет.

Недостатки

Высокая начальная стоимость оборудования и установки внешнего коллектора или скважины забора воды.

2.3.3 Преимущества и недостатки геотермальной энергетики

Основной недостаток геотермальной энергии - необходимость обратной закачки отработанной воды в подземный водоносный горизонт. Другой недостаток этой энергии заключается в высокой минерализации термальных вод большинства месторождений и наличии в воде токсичных соединений и металлов, что в большинстве случаев исключает возможность сброса этих вод в расположенные на поверхности природные водные системы. Отмеченные выше недостатки геотермальной энергии приводят к тому, что для практического использования теплоты геотермальных вод необходимы значительные капитальные затраты на бурение скважин, обратную закачку отработанной геотермальной воды, а также на создание коррозийно-стойкого теплотехнического оборудования.

Вывод

Всего в России можно выделить три основные зоны, в зависимости от типа и возможностей использования геотермальной энергии:

Камчатка и Курилы -- наиболее «горячие»точки;

Северный Кавказ и зона, прилегающая к Байкалу, где возможно использование глубинных вод для теплоснабжения;

Потенциально обширная территория, охватывающая 2/3 России, где возможно использование низкопотенциальной энергии с помощью тепловых насосов.

Принципом теплового насоса, используемым в большом масштабе, можно назвать и петротермальную энергетику, использующую энергию фонового теплового потока, исходящего из недр Земли.

Геотермальная энергетика России ориентирована как на строительство «гигантов» (крупных объектов), так и на использование геотермальной энергии для отдельных домов, школ, больниц, частных магазинов и других объектов мощностью 0,1-0,4 МВт с использованием геотермальных циркуляционных систем.

В настоящий момент в России разведано около полусотни геотермальных месторождений. Для дальнейшего развития геотермальной энергетики необходимы инвестиции и поддержка государства. Введение геотермальной энергетики в энергобаланс страны позволит, с одной стороны, повысить энергетическую безопасность, с другой - снизить вредное воздействие на экологическую обстановку по сравнению с традиционными источниками.

2.4 Биогазовая энергетика

Биогаз -- газ, получаемый метановым брожением биомассы. В результате биохимической реакции, в которой принимают участие метановые бактерии, выделяется биогаз, его основными составляющими являются: метан (СН 4 , около 70%), углекислый газ (СО 2 , около 30%) и некоторое количество H 2 , H 2 S, N 2 . Теплотворная способность данной газовой смеси от 5000 до 8000 Ккал/м3, в зависимости от состава органических отходов.

2.4.1 Получение биогаза

Суть процесса получения биогаза в биореакторе сводится к следующему:

· создание условий для начала химической реакции разложения органики,

· отвод полученного биогаза и его накопление с одновременным созданием необходимого рабочего давления,

· вывод твердых фракций за пределы реактора, полученных в результате реакции разложения.

Теперь более подробно о каждом процессе.

2.4.2 Сырьё:

навоз и помет птиц, растительные и молочные отходы, энергетические культуры (силосная кукуруза).

Следует отметить, что для большей эффективности, растительные отходы следует измельчать до минимально возможных размеров и готовить смесь.

Пропорциональное смешение органики с целью повышения объема выхода биогаза:

· навоз КРС + помет птиц дает увеличение выхода биогаза на 6%

· навоз КРС + куриный помет + навоз свиней (1: 0,5: 0,5) - на 11%

· навоз КРС + свиной - на 7%

· навоз КРС + сосняки (опавшая хвоя) - на 5%

· надо заметить, что птичий помет в чистом виде не может перерабатываться в биогаз в обычном реакторе поскольку содержат высокий уровень кислот, при котором метановые бактерии погибают (на птицефабриках дополнительно используют реактор гидролиза)

· наличие большого количества мочи не способствует увеличению выхода биогаза, зато, сказывается на азотонасыщенности конечных твердых фракций; вода так же является лишь источником разжижения массы для ускорения реакции и ее (воды) объем на увеличении количества биогаза не отражается (достаточная влажность биосырья должна составлять 60-70%).

В принципе, процесс биореакции в закрытом пространстве (анаэробное сбраживание), со временем, начинается сам по себе, но существенно замедляется при низких температурах воздуха. Наиболее оптимальная температура для поддержания биологической активности метановых бактерий 30-40 0 С. Для искусственного ускорения начала процесса применяют подогрев биомассы с помощью обычного обогревателя-змеевика до температуры +38 0 С.

Метантек (биореактор) с целью поддержания температурного режима тщательно теплоизолируют.

Для увеличения скорости брожения и образования биогаза применяют механическоеперемешивание биомассы в биогазовой установке. Этот прием позволяет существенно сэкономить на объеме реактора, так как при отсутствии данной процедуры для получения того же объема биогаза потребуется реактор больших размеров.

На процесс брожения влияют и химические показатели, в частности, уровнь РН: если он высок, процесс существеннно замедляется либо вовсе останавливается.

Замедлению реакции сбраживания способствует наличие в биомассе сырья, содержащего антибиотики, консерванты и остатки моющих средств. Поэтому отходы жизнедеятельности человека малопригодны для биогазовых реакторов.

С целью ускорения биопроцесса в метантеках применяются стимулирующие добавки.

В примитивных биогазовых установках биогаз скапливается под тяжелой крышкой реактора, доводится до определенного давления и после отводится в систему газопотребления. В качестве газгольдера на подворье может служить и внешняя установка наподобие кузнечных мехов. Для поддержания необходимого давления в данной конструкции используется гнет.

2.4.3 Типы биогазовых установок

По типу конструкции биогазовые установки бывают следующих типов:

Без обогрева и без промешивания ферментируемой органики в реакторе;

Без обогрева, но с промешиванием органической массы;

С обогревом и промешиванием;

С обогревом, с промешиванием и с приборам, позволяющими контролировать и управлять процесс ферментации.

Биогазовая установка первого типа подходит для небольшого хозяйства и рассчитана на психрофильные бактерии: внутренний объем биореактора 1-10 м 3 (переработка 50-200 кг навоза за сутки), минимальная комплектация, полученный биогаз не хранится -- сразу поступает к потребляющим его бытовым приборам. Такую установку можно использовать только в южных районах, она рассчитана на внутреннюю температуру 5-20°С. Удаление ферментированной (сброженной) органики производится одновременно с загрузкой новой партии, отгрузка выполняется в емкость, объем которой должен быть равным или больше внутреннего объема биореактора. Содержимое емкости храниться в ней до введения в удобряемую почву.

Конструкция второго типа также рассчитана на небольшое хозяйство, ее производительность несколько выше биогазовых установок первого типа -- в ее оснащение входит перемешивающее устройство с ручным или механическим приводом.

Третий тип биогазовых установок оснащен помимо промешивающего устройства принудительным обогревом биореактора, водогрейный котел при этом работает на альтернативном топливе, производимом биогазовой установкой. Выработкой метана в таких установках занимаются мезофильные и термофильные бактерии, в зависимости от интенсивности обогрева и уровня температуры в реакторе.

Последний тип биогазовых установок наиболее сложен и рассчитан на нескольких потребителей биогаза, в конструкцию установок вводятся электроконтактный манометр, предохранительный клапан, водогрейный котел, компрессор (пневматическое промешивание органики), ресивер, газгольдер, газовый редуктор, отвод для загрузки биогаза в транспорт. Эти установки работают непрерывно, допускают установку любого из трех температурных режимов благодаря точно настраиваемому обогреву, отбор биогаза выполняется в автоматическом режиме.

2.4.4 Достоинства и недостатки биогаза

Биогазовая отрасль производит не один конечный продукт, а целый спектр дорогих и важных продуктов и без ущерба экологии:

Достоинства.

* Тепло - от охлаждения генератора или от сжигания биогаза. Полученное тепло используют для обогрева помещений.

* Электричество - из 1 мі биогаза можно выработать около 2 кВт электроэнергии.

* Биогаз - биогаз можно сжимать, накапливать, перекачивать излишки, продавать. Существуют модели автомобилей, которые используют в качестве топлива газ. Эти машины могут без дополнительной адаптации заправляться биометаном. Сейчас появляются первые заправочные биогазовые станции. В Швеции и Швейцарии биометан уже долгое время используется в городских автобусах (Volvo, Skania) и грузовых машинах.

* Удобрения - удобрения, получаемые в виде переброженной массы являются экологически чистыми, жидкими удобрениями, лишенными нитритов, семян сорников, болезнетворной микрофлоры, специфических запахов. Расход таких удобрений составляет 1-5 т вместо 60 т необработанного навоза для обработки 1 га земли. В полученное удобрение могут добавляться фосфорные, калийные или другие удобрения, в зависимости от культуры, под которые будут использоваться удобрения. Испытания показывают увеличение урожайности в 2-4 раза.

* Утилизация органических отходов - биогазовые установки могут устанавливаться как очистные сооружения на фермах, птицефабриках, спиртовых заводах, сахарных заводах, мясокомбинатах, что повышает санитарно-гигиеническое состояние этих предприятий.

* Решение экологических проблем - производство биогаза позволяет предотвратить выбросы метана в атмосферу, снизить применение химических удобрений, сократить нагрузку на грунтовые воды.

Недостатки

Складирование биогаза в закрытых ёмкостях повышает требования к безопасности при использовании биогазовых установок.

Вывод

Агропромышленный комплекс России сегодня сталкивается с проблемой утилизации огромного количества биологических отходов -- чаще всего они просто вывозятся с территорий ферм и складируются. Стало происходить заметное загрязнение прилегающих к фермам рельефа почв, водоемов, лесов и пастбищ. В итоге наносится серьезный экономический, экологический и социальный ущерб не только сельскохозяйственным землям, но и жителям близлежащих населенных пунктов.

Развитие биогазовой энергетики в сельскохозяйственных регионах России может стать не только возможным решением проблемы отходов, но и решением энергетических проблем сельского хозяйства. Кроме того, биогазовая энергетика -- это еще и источник дешевых и доступных комплексных органических удобрений, которые образуются как субпродукт при производстве биогаза.

Заключение

Перспективы развития возобновляемых источников энергии и энергоэффективности в России

По оценкам, технический потенциал возобновляемых источников энергии составляет порядка 4,6 млрд. т у.т. в год, то есть в пять раз превышает объем потребления всех топливно-энергетических ресурсов России, а экономический потенциал определен в 270 млн. т у.т. в год, что немногим более 25 процентов от годового внутреннего потребления энергоресурсов в стране.

Важно отметить, что экономический потенциал возобновляемых источников энергии существенно увеличился, и будет продолжать расти в связи с подорожанием традиционного топлива.

Помимо неистощаемости и экологической чистоты ВИЭ, которые являются очевидными преимуществами этих видов энергии, существует ряд других причин обусловливающих необходимость их интенсивного использования.

Энергетическая стратегия России до 2020 года подчеркивает, что необходимость использования ВИЭ определяется их существенной ролью при решении следующих проблем:

Обеспечение устойчивого тепло- и электроснабжения населения и производства в зонах децентрализованного энергоснабжения, в первую очередь в районах Крайнего Севера и приравненных к ним территориях;

Обеспечение гарантированного минимума энергоснабжения населения и производства в зонах централизованного энергоснабжения, испытывающих дефицит энергии, предотвращение ущерба от аварийных и ограничительных отключений;

Снижение экологической нагрузки от деятельности топливно-энергетического комплекса.

В настоящее время одними из ключевых факторов, сдерживающих развитие ВИЭ в России, являются дефицит инвестиций для реализации необходимых проектов, а также недостатки нормативно-правовой базы.

Литература

1. Лятхер, В.М. Развитие ветроэнергетики / В.М. Лятхер //Журнал «Малая энергетика». - 2006. - № 1-2 (4-5).

2. Шпильрайн Э.Э. Проблемы и перспективы возобновляемой энергии в России

3. Щелкунов Г. Солнечная энергетика. Глобальные проекты // Электроника. НТБ. 2002. № 6.

4. Производство и использование биомассы // Энергосбережение. 2007. № 5.

5. Твайделл Дж., Уэйр А. Возобновляемые источники энергии: Пер. с англ. - М. Энергоатомиздат. 1990. - 392 с.

6. Ресурсы Интернета.Тема реферата: «Нетрадиционные и возобновляемые источники энергии»

Размещено на Allbest.ru

Подобные документы

    Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат , добавлен 27.02.2010

    Классификация возобновляемых источников энергии. Современное состояние и перспективы дальнейшего развития гидро-, гелео- и ветроэнергетики, использование энергии биомассы. Солнечная энергетика в мире и в России. Развитие биоэнергетики в мире и в РФ.

    курсовая работа , добавлен 19.03.2013

    Прогноз и требования к энергетике с позиции устойчивого развития человечества. Нетрадиционные источники энергии: Энергия Солнца, ветра, термальная энергия земли, энергия внутренних вод и биомассы. Попытки использования нетрадиционные источников энергии.

    реферат , добавлен 02.11.2008

    Использование возобновляемых источников энергии, их потенциал, виды. Применение геотермальных ресурсов; создание солнечных батарей; биотопливо. Энергия Мирового океана: волны, приливы и отливы. Экономическая эффективность использования энергии ветра.

    реферат , добавлен 18.10.2013

    Распространение солнечной энергии на Земле. Способы получения электричества из солнечного излучения. Освещение зданий с помощью световых колодцев. Получение энергии с помощью ветрогенераторов. Виды геотермальных источников энергии и способы ее получения.

    презентация , добавлен 18.12.2013

    Основные виды альтернативной энергии. Биоэнергетика, энергия ветра, Солнца, приливов и отливов, океанов. Перспективные способы получения энергии. Совокупная мощность ветроэлектростанций Китая, Индии и США. Доля альтернативной энергетики в России.

    презентация , добавлен 25.05.2016

    Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.

    курсовая работа , добавлен 30.07.2012

    Существующие источники энергии. Мировые запасы энергоресурсов. Проблемы поиска и внедрения нескончаемых или возобновляемых источников энергии. Альтернативная энергетика. Энергия ветра, недостатки и преимущества. Принцип действия и виды ветрогенераторов.

    курсовая работа , добавлен 07.03.2016

    Основные способы получения энергии, их сравнительная характеристика и значение в современной экономике: тепловые, атомные и гидроэлекростанции. Нетрадиционные источники энергии: ветровая, геотермальная, океаническая, энергия приливов и отливов, Солнца.

    курсовая работа , добавлен 29.11.2014

    Изучение опыта использования возобновляемых источников энергии в разных странах. Анализ перспектив их массового использования в РФ. Основные преимущества возобновляемых альтернативных энергоносителей. Технические характеристики основных типов генераторов.

Возобновляемые - это ресурсы, энергия которых непрерывно восстанавливается природой: энергия рек, морей, океанов, солнца, ветра, земных недр и т.п.

Невозобновляемые - это ресурсы, накопленные в природе ранее, в далекие геологические эпохи, и в новых геологических условиях практически не восполняемые (органические топлива: уголь, нефть, газ). К невозобновляемым энергоресурсам относится также ядерное топливо.

Энергетика на ископаемом топливе (тепловые, конденсационные электрические станции, котельные) стала традиционной. Однако оценка запасов органического топлива на планете с учетом технических возможностей их добычи, темпов расходования в связи с ростом энергопотребления показывает ограниченность запасов. Особенно это касается нефти, газа, высококачественного угля, представляющих собой ценное химическое сырье, которое сжигать в качестве топлива нерационально и расточительно. Отрицательное влияние оказывает сжигание больших количеств топлива в традиционных энергетических установках на окружающую среду: загрязнение, изменение газового состава атмосферы, тепловое загрязнение водоемов, повышение радиоактивности в зонах ТЭС, общее изменение теплового баланса планеты.

Практически неисчерпаемы возможности ядерной и термоядерной энергетики, но с нею связаны проблемы теплового загрязнения планеты, хранения радиоактивных отходов, вероятных аварий энергетических гигантов.

В связи с этим во всем мире отмечается повышенный интерес к использованию нетрадиционных возобновляемых источников энергии. Их природа определяется процессами на Солнце, в глубинах Земли, гравитационным взаимодействием Солнца, Земли и Луны. Установки

работающие на возобновляемых источниках, оказывают гораздо меньшее воздействие на окружающую среду, чем традиционные потоки энергии, естественно циркулирующие в окружающем пространстве. Экологическое воздействие энергоустановок на возобновляемых источниках в основном заключается в нарушении ими естественного ландшафта.

В настоящее время возобновляемые энергоресурсы используются незначительно. Их применение крайне заманчиво, многообещающе, но требует больших расходов на развитие соответствующей техники и технологий. При ориентации части энергетики на возобновляемые источники важно правильно оценить их долю, технически и экономически оправданную для применения. Эта задача - оценить, использовать потенциал возобновляемых ресурсов, найти их место в топливно-энергетическом комплексе - стоит перед экономикой Беларуси. Ее решение поможет смягчить дефицитность энергосистемы республики, позволит снизить зависимость от импорта энергоресурсов, будет способствовать стабильности экономики и политической независимости.

При планировании энергетики на возобновляемых источниках важно учесть их особенности по сравнению с традиционными невозобновляемыми. К ним относятся следующие.

1.Периодичность действия в зависимости от неуправляемых человеком природных закономерностей и, как следствие, колебания мощности возобновляемых источников от крайне нерегулярных, как у ветра, до строго регулярных, как у приливов.

2.Низкие, на несколько порядков ниже, чем у возобновляемых источников (паровые котлы, ядерные реакторы), плотности потоков энергии и рассеянность их в пространстве. Поэтому энергоустановки на возобновляемых источниках эффективны при небольшой единичной мощности и прежде всего для сельских районов.

3.Применение возобновляемых ресурсов эффективно лишь при комплексном подходе к ним. Например, отходы животноводства и

растениеводства на агропромышленных предприятиях одновременно могут служит сырьем для производства метана, жидкого и твердого топлива, а также удобрений.

4.Экономическую целесообразность использования того или иного источника возобновляемой энергии следует определять в зависимости от природных условий, географических особенностей конкретного региона, с одной стороны, и в зависимости от потребностей в энергии для промышленного, сельскохозяйственного производства, бытовых нужд, с другой. Рекомендуется планировать энергетику на

возобновляемых источниках для районов размером порядка 250 км. При выборе источников энергии следует иметь в виду их качество.

Последнее оценивается долей энергии источника, которая может быть превращена в механическую работу. Электроэнергия обладает высоким качеством. С помощью электродвигателя более 95% ее можно превратить в механическую работу. Качество тепловой энергии, получаемой в результате сжигания топлива на тепловых электростанциях, довольно низкое - около 30%.

Возобновляемые источники энергии по их качеству условно делят на три группы:

1.Источники механической энергии, обладающие довольно высоким качеством:

¾ ветроустановки - порядка 30%,

¾ гидроустановки - 60%,

¾ волновые и приливные станции - 75%. 2.Источники тепловой энергии:

¾ прямое или рассеянное солнечное излучение,

¾ биотопливо, обладающее качеством не более 35%.

3.Источник энергии, использующие фотосинтез и фотоэлектрические явления, имеют различное качество на разных частотах излучения; в среднем КПД фотопреобразователей составляет порядка 15%.

Основными нетрадиционными и возобновляемыми источниками энергии для Беларуси являются гидро-, ветроэнергетические, солнечная энергия, биомасса, твердые бытовые отходы.

3.1.Солнечная энергетика. Возможность использования солнечной энергии.

Известно два направления использования солнечной энергии. Наиболее реальным является преобразование солнечной энергии в тепловую и использование в нагревательных системах. Второе направление - системы непрямого и прямого преобразования в электрическую энергию.

Прямое преобразование солнечной энергии в тепловую.

Солнечные нагревательные системы могут выполнять ряд функций:

¾ подогрев воздуха, воды для отопления и горячего водоснабжения зданий в районах с холодным климатом;

¾ сушку пшеницы, риса, кофе, других сельскохозяйственных культур, лесоматериалов для предупреждения их поражения насекомыми и плесневыми грибками;

¾ поставлять теплоту, необходимую для работы абсорбционных холодильников;

¾ опреснение воды в солнечных дистилляторах;

¾ приготовление пищи;

¾ привод насосов.

На рис.3.1 представлены три из большого числа конструкций нагревателя воды, отличающихся по эффективности и стоимости.

Рис.3.1. Приемники солнечного излучения

а) - открытый резервуар на поверхности Земли. Тепло уходит в Землю; б) - черный резервуар в контейнере со стеклянной крышкой с изолированным дном;

в) - заполненная водой металлическая плоская емкость. Стандартный промышленный приемник: нагревая жидкость протекает через него и накапливается в специальном резервуаре.

Для отопления зданий зимой могут применяться так называемые пассивные и активные солнечные системы. На рис.3.2а показан пассивный солнечный нагреватель: солнечные лучи попадают на заднюю стенку и пол здания, представляющие собой массивные конструкции с усиленной теплоизоляцией, окрашенные в черный цвет. Недостаток такой системы прямого нагрева - медленный подъем температуры в зимние дни и чрезмерная жара летом - устраняется с помощью накопительной стенки с солнечной стороны (рис.3.2б). Стенка работает как встроенный воздушный нагреватель с тепловой циркуляцией. Летом такую стену может затенять козырек крыши.

Активные солнечные отопительные системы используют внешние нагреватели воздуха и воды. Их можно устанавливать на уже существующие здания.

В системах непрямого преобразования в электрическую - на гелиотермических электростанциях солнечная энергия, аналогично энергии органического топлива на ТЭС, превращается в тепловую энергию рабочего тела, например, пара, а затем в электрическую. Можно создать гелиотермические электростанции мощностью до нескольких десятков - сотен мегаватт. Концентрация солнечной энергии может осуществляться с помощью рассредоточенных коллекторов в форме параболоидов диаметром более 30м.

Рис.3.2 Пассивные солнечные нагреватели:

а - прямой нагрев задней стенки здания: использованы массивные, окрашенные в черный цвет поверхности с усиленной теплоизоляцией для поглощения и накопления солнечной теплоты;

б - здание с накопительной стенкой.

Рис.3.3 Солнечные системы накопления тепловой энергии.

а) солнечная электростанция башенного типа: 1 - солнечный котел; 2 - гелиостат; 3 – паровая

Каждый из них независимо следит за Солнцем и передает его энергию теплоносителю. Альтернативный вариант - солнечные электростанции башенного типа. На них системы плоских зеркал, расположенные на большой площади, отражают солнечные лучи на центральный теплоприемник на вершине башни (рис.3.3).

К сожалению, КПД преобразования солнечной энергии в электрическую на гелиотермических электростанциях составляет не более 10%, а стоимость получаемой электроэнергии несопоставима с ее стоимостью на ТЭС и даже АЭС. Серьезная проблема - непостоянство солнечного излучения в течении суток, его зависимость от времени года. Для обеспечения круглосуточного энергоснабжения требуется аккумулирование энергии. В этой связи рациональна совместная работа гелиотермической и гидроаккумулирующей электростанций.

Заманчиво и многообещающе прямое превращение солнечной энергии в электрическую с помощью солнечных элементов (рис.3.4), в которых используется явление фотоэффекта. В настоящее время наиболее совершенны кремниевые фотоэлементы. Их КПД составляет не более 15%, и они очень дороги. Предложено два варианта реализации принципа фотоэлектрического преобразования. Первый

заключается в создании солнечных станций на искусственных спутниках Земли, оборудованных солнечными панелями из фотоэлементов площадью от 20 до 100 км2 в зависимости от мощности станции. Вырабатываемая на спутниках электроэнергия будет преобразовываться в электромагнитные волны в микроволновом диапазоне частот, направляться на Землю, где принимается приемной антенной. Второй предполагает монтаж сборных панелей солнечных фотоэлектрических элементов в малонаселенных и малоиспользуемых пустынных районах Земли.

Для территории Беларуси свойственны относительно малая интенсивность солнечной радиации и существенное изменение ее в течение суток года. В этой связи необходимо отчуждение значительных участков земли для сбора солнечного излучения, весьма большие материальные и трудовые затраты. Поэтому для нашей республики реально использование солнечной энергии для сушки кормов, семян, фруктов, овощей, подъема и подогрева воды на технологические и бытовые нужды. В результате возможная экономия топливно-энергетических ресурсов оценивается всего в 5000 у.т./год.

Нетрадиционные возобновляемые источники энергии - это солнечное излучение, энергия ветра, энергия малых рек и водотоков, приливов, волн, энергия биомассы (дрова, бытовые и сельскохозяйственные отходы, отходы животноводства, птицеводства, лесозаготовок, лесной, деревообрабатывающей и целлюлозно-бумажной промышленности), геотермальная энергия, а также рассеянная тепловая энергия (тепло воздуха, воды океанов, морей и водоёмов).

Основное преимущество возобновляемых источников энергии их неисчерпаемость и экологическая чистота. Их использование не изменяет энергетический баланс планеты. Возобновляемые источники энергии играют значительную роль в решении трёх глобальных проблем, стоящих перед человечеством: энергетика, экология, продовольствие.

Указанные источники энергии имеют как положительные, так и отрицательные свойства. К положительным относятся повсеместная распространенность большинства их видов, экологическая чистота. Эксплуатационные затраты по использованию нетрадиционных источников не содержат топливной составляющей, так как энергия этих источников как бы бесплатная.

Отрицательные качества - это малая плотность потока (удельная мощность) и изменчивость во времени большинства НВИЭ. Первое обстоятельство заставляет создавать большие площади энергоустановок, «перехватывающие» поток используемой энергии (приемные поверхности солнечных установок, площадь ветроколеса, протяженные плотины приливных электростанций и т.п.). Это приводит к большой материалоемкости подобных устройств, а, следовательно, к увеличению удельных капиталовложений по сравнению с традиционными энергоустановками. Правда, повышенные капиталовложения впоследствии окупаются за счет низких эксплуатационных затрат, но на начальной стадии они чувствительно «бьют по карману» тех, кто хочет использовать НВИЭ. Больше неприятностей доставляет изменчивость во времени таких источников энергии, как солнечное излучение, ветер, приливы, сток малых рек, тепло окружающей среды. Если, например, изменение энергии приливов строго циклично, то процесс поступления солнечной энергии, хотя в целом и закономерен, содержит, тем не менее, значительный элемент случайности, связанный с погодными условиями. Еще более изменчива и непредсказуема энергия ветра. Зато геотермальные установки при неизменном дебите геотермального флюида в скважинах гарантируют постоянную выработку энергии (электрической или тепловой). Кроме того, стабильное производство энергии могут обеспечить установки, использующие биомассу, если они снабжаются требуемым количеством этого «энергетического сырья».

Нетрадиционные источники энергии

Современный темп роста потребления энергии с учетом рос­та населения невозможно обеспечить без использования новых источников, более эффективных, чем сжигание угля, нефти и газа 7 По данным ЮНЕСКО, примерно 2 млрд жителей Земного шара не имеют доступа к использованию электрической энер­гии в силу проживания в удаленных регионах, где не развита электроэнергетика. Исчерпаемость запасов органического топ­лива, а также сильное загрязнение окружающей среды продук­тами его сгорания уже в ближайшее время могут привести че­ловечество к энергетическому и экологическому кризисам.

Не нарушая экологического состояния окружающей сре­ды и не отказываясь от достижения целей экономического развития, можно обеспечивать значительную часть энерге­тических потребностей за счет использования возобновляе­мых источников энергии

Преимуществами альтернативных (нетрадиционных и во­зобновляемых) источников энергии по отношению к атом­ной энергетике и сжиганию ископаемого органического топ­лива являются их экологическая безопасность, доступность и возможность локального использования. Использование возобновляемых источников энергии является одним из при­оритетных направлений в энергетической политике нашего государства, но их доля в топливном балансе республики пока чрезвычайно мала.

Структура альтернативной энергетики

Потенциал нетрадиционных и возобновляемых источников энергии в Республике Беларусь (млн т у. т. в год)

Солнечная энергетика

Плотность потока солнечного излучения, приходящегося на Землю, составляет примерно 1 кВт/м 2 .

Основными направлениями солнечной энергетики высту­пают фотоэнергетика и гелиоэнергетика. Первая связана с прямым преобразованием потока солнечной энергии в элек­тричество, вторая - с утилизацией тепла при помощи актив­ных и пассивных теплоиспользующих систем.

В 1993 г. суммарная мощность установленных на Земле солнечных батарей достигала 500 МВт, в 1996 г. - 700 МВт, ежегодный прирост составляет около 10 %. Есть основания утверждать, что к 2025 г. солнечная энергетика будет обес­печивать до 10 % всей электрической энергии, производи­мой в мире. Стоимость электроэнергии, получаемой от сол­нечных установок, достаточно быстро снижается.



Солнечные батареи. Энергия солнечной радиации мо­жет быть преобразована в постоянный электрический ток посредством солнечных батарей - устройств, состоящих из тонких пленок кремния или других полупроводниковых ма­териалов. Срок их службы практически не ограничен. Ба­тареи имеют высокую надежность и стабильность, малую массу, отличаются простотой в обслуживании, эффективным использованием как прямой, так и рассеянной солнечной радиации. Модульный тип конструкций позволяет созда­вать установки практически любой мощности и делает их весьма перспективными.

Переход на гетеросоединения типа арсенидов галлия и алюминия, применение концентраторов солнечной радиа­ции с кратностью концентрации 50-100 позволяют повы­сить КПД солнечных батарей до 35 %.

Солнечные эле­менты последовательно соединяются в модули, которые па­раллельно соединяются в батареи.

Башенные и модульные электростанции. Строятся сол­нечные электростанции (СЭС) в основном двух типов: ба­шенного и распределенного (модульного).

В башенных СЭС центральный приемник с полем гелиоста­тов (плоских зеркал) обеспечивает увеличение плотности пото­ка солнечной энергии в несколько тысяч раз. Управление сис­темой слежения за Солнцем осуществляется с помощью ЭВМ.

В 1985 г. в п. Щелкино Крымской области была введе­на в эксплуатацию первая в СССР солнечная электростан­ция СЭС-5 электрической мощностью 5 МВт.

Ее 1 600 гелиостатов, имеющих коэффициент отражения 0,71 и площадь 25,5 м 2 каждый, концентрируют солнечную энер­гию на центральный приемник, представляющий собой от­крытый цилиндр, установленный на башне высотой 89 м и служащий парогенератором.

В соответствии с прогнозом, в будущем СЭС займут 13 млн км 2 на суше и 18 млн км 2 в океане.



Солнечный пруд. СЭС на базе солнечных прудов значительно дешевле СЭС других типов, так как они не требуют зеркальных отражателей со сложной систе­мой ориентации.

В солнечном пруду происходит одновременное улавлива­ние и накапливание солнечной энергии в большом объеме жидкости. Солнечная энергия, проникающая через всю мас­су жидкости в пруду, поглощается окрашенным в темный цвет дном и нагревает прилегающие слои жидкости до тем­пературы 90-100 °С, в то время как температура поверхнос­тного слоя остается на уровне 20 °С.

Солнечные коллекторы и аккумуляторы теплоты. Основным конструктивным элементом солнечной установ­ки является коллектор, в котором происходит улавливание солнечной энергии, ее преобразование в теплоту и нагрев воды, воздуха или какого-либо другого теплоносителя. Раз­личают два типа солнечных коллекторов: плоские и ф о -кусирующие. В плоских коллекторах солнечная энер­гия поглощается без концентрации, а в фокусирующих -с концентрацией, т. е. с увеличением плотности поступаю­щего потока радиации. Наиболее распространенным типом коллекторов в низкотемпературных гелиоустановках явля­ется плоский коллектор солнечной энергии (КСЭ). Его рабо­та основана на принципе "горячего ящика". Максимальная температура нагрева теплоносителя в плоском коллекторе не превышает 100 "С.

Для работы установок, требующих высокой температу­ры, которую невозможно получить с помощью плоских на­гревателей, используют фокусирующий солнечный коллек­тор. Такой коллектор включает в себя приемник, поглоща­ющий излучение и преобразующий его в какой-либо дру­гой вид энергии, и концентратор, который представляет со­бой оптическую систему, собирающую солнечное излуче­ние с большой поверхности и направляющую ее на прием­ник. При этом концентратор вращается, ориентируясь на наиболее интенсивное излучение. Концентрация солнечной энергии позволяет нагреть поверхность теплообмена до 700 °С и более, что достаточно для работы теплового двига­теля с приемлемым КПД. В этом случае коллектор переда­ет энергию теплоносителю, который поступает в генератор электроэнергии.

Система солнечного теплоснабжения зданий. В пассив­ных системах роль солнечного коллектора и аккумулятора теплоты обычно выполняют сами ограждающие конструк­ции здания, а движение теплоносителя (воздуха) осуществ­ляется за счет естественной конвекции без применения вен­тилятора. В 2000 г. в странах Европейского сообщества пас­сивные гелиосистемы позволили сэкономить 50 млн т нефти.

В состав активной системы солнечного отопления вхо­дят: коллектор солнечной энергии, аккумулятор теплоты, дополнительный (резервный) источник энергии, теплообмен­ники для передачи теплоты из КСЭ в аккумулятор и далее к потребителям, насосы или вентиляторы, трубопроводы с ар­матурой и комплекс устройств для автоматического управ­ления работой системы. Солнечный коллектор обычно уста­навливается на крыше дома, остальное оборудование гелио­системы отопления и горячего водоснабжения дома разме­щается в подвале.

Наряду с окнами и остекленными поверхностями южного фасада для улавливания солнечного излучения используются остекленные проемы в крыше и дополнительные окна в верх­ней части здания.

Прямое улавливание солнечной энергии может эффектив­но осуществляться при соблюдении следующих условий:

Оптимальная ориентация дома - вдоль оси восток-за­пад или с отклонением до 30° от этой оси;

На южной стороне расположены 50-70 % всех окон, а на северной - не более 10 %, причем южные окна должны иметь двухслойное остекление, а северные - трехслойное;

Здание должно иметь улучшенную тепловую изоляцию и низкие теплопотери вследствие инфильтрации наружно­го воздуха;

Внутренняя планировка здания должна обеспечивать расположение жилых комнат с южной стороны, а вспомога­тельных помещений - с северной;

Должна быть обеспечена достаточная теплоаккумулиру-ющая способность внутренних стен и пола для поглощения и аккумулирования теплоты солнечной энергии;

Для предотвращения перегрева помещений в летний период над окнами должны быть предусмотрены навесы, козырьки и т. п.

КПД такой системы отопления, как правило, составляет 25-30 %, но в особо благоприятных климатических услови­ях может быть значительно выше и достигать 60 %.

Солнечные водонагревательные установки. Сейчас во всем мире в эксплуатации находится более 5 млн солнеч­ных водонагревательных установок, используемых в инди­видуальных жилых домах, централизованных системах го­рячего водоснабжения жилых и общественных зданий, вклю­чая гостиницы, больницы, спортивно-оздоровительные учреж­дения и т. п. Налажено промышленное производство сол­нечных водонагревателей в Японии, Израиле, США, Австра­лии, Индии, ЮАР, во Франции, на Кипре и других странах.

Солнечные водонагревательные установки получили довольно широкое распространение благодаря простоте их конструкции, надежности, быстрой окупаемости. По принципу работы их можно разделить на два типа: уста­новки с естественной и принудительной циркуляцией теп­лоносителя.

Солнечная водонагревательная установка с естественной циркуляцией содержит коллектор солнечной энергии. В бак аккумулятора подводится холодная вода, и из его верхней части отводится потребителям горячая.

Солнечная водонагревательная установка с принудительной циркуляцией теплоносителя содержит тепловой коллектор сол­нечной энергии и аккумулятор тепловой энергии (бак с тепло­носителем). В аккумуляторе находится теплоприемник, где на­гревается вода. Нагретая вода циркуляционным насосом пода­ется потребителю, а холодная возвращается в аккумулятор.

Ветроэнергетика

Потенциал энергии ветра в мире сравним с потреблением энергии странами ЕС в начале нашего столетия. В развитых странах ветроэнергетика развивается быстрыми темпами. С 1997 по 2002 г. производственные мощности ветроэнергетических установок (ВЭУ) увеличились на 30 %

Мощность установленных ветроэлектростанций в Герма­нии, Америке, Испании, Дании в сумме составляет 82 % от общемировых.

На территории Германия работает около 14 000 турбин. В настоящее время 4,7% всей электроэнергии в стране вырабатывается за счет энергии ветра, к 2010 г. прогнозиру­ется увеличение до 10 % и к 2030 г. - до 25 %.

В США в настоящее время потребляется около 1 % элек­троэнергии, полученной на основе энергии ветра. По прогно­зам специалистов к 2020 г. эта энергия составит 6 % всей вырабатываемой в стране электроэнергии.

В Дании ветер дает не менее 18 % всей энергии. Круп­ный прирост мощностей наметился в Голландии, где в 2005 г. на ветроэнергетику приходилось около 5 % электроэнергии из возобновляемых источников.

Большая часть ветроэнергетических установок использу­ется для производства электроэнергии в единой энергосис­теме и в автономных режимах. Стоимость электроэнергии от ветроустановок стабильно понижается: в 1983 г. стоимость 1 кВт-ч составляла 1220 центов, в 1989 г. - 6-10, в 1996 г. -5-8, в 2005 г. - 4-5 центов. С начала 80-х гг. производство энергии за счет энергии ветра стало на 80 % дешевле и на сегодняшний день уступает в цене лишь природному газу.

По оптимистическим прогнозам, ветроэнергетика способ­на давать миру не менее 7 % потребляемой электроэнергии.

Малые ветряные турбины (от 0,025 до 50 кВт) чаще всего являются самым дешевым источником энергии для отда­ленных населенных пунктов, не подключенных к комму­нальной электросети. Комбинированные системы (ветер -фотоэлементы, ветер - дизель и другие сочетания) часто яв­ляются наиболее эффективными и экономичными для сель­ской электрификации. Для небольших ветроэлектрических турбин среднегодовая скорость ветра должна быть около 4 м/с, а для ветротурбин, приводящих в действие водяные насосы, - еще меньше. Для коммунальных ветроэлектрос-танций минимальная скорость ветра составляет около 6 м/с.

В районах с благоприятными ветровыми условиями среднегодо­вое производство электроэнергии ветроэнергетическими установ­ками составляет до 25-30 % максимального проект­ного значения. Срок службы ВЭУ не менее 15-20 лет, а их стоимость -от 1 000 до 1 500 долларов США за 1 кВт проектной мощности.

Ветроустановки классифициру­ются по основным признакам гео­метрии колеса и его положения относительно ветра.

Если ось вращения ветроколеса расположена параллельно воздуш­ному потоку, установку называют горизонтально-осевой; если перпен­дикулярно - вертикально-осевой.

Основными элементами ветро-генераторов являются ветроуста-новка, электрогенератор, система управления параметрами генериру­емой электроэнергии (регулирует скорость вращения ветроколеса при изменении скорости ветра), аккумуляторы электроэнергии или другие электроэнергети­ческие установки (на период безветрия). Основным рабочим органом ВЭУ, принимающим на себя энергию ветра и преоб­разующим ее в кинетическую энергию своего вращения, яв­ляется ветроколесо. Мощность ВЭУ определяется характе­ристиками ветроколеса. Ветроколесо характеризуется:

Заметаемой площадью S - площадью, покрываемой его лопастями при вращении, S - nD 2 1 А, где D - диаметр колеса;

Геометрическим заполнением, т. е. отношением площа­ди проекции лопастей на плоскость, перпендикулярную по­току, к заметаемой площади;

Коэффициентом мощности, характеризующим эффектив­ность использования потока ветра через заметаемую пло­щадь, (зависит от конструкции ветроколеса);

Коэффициентом быстроходности, определяемым отноше­нием скорости конца лопасти к скорости ветра.

Мощность ветроколеса Р определяется по формуле

P = l/2C p Spo 3 ,

где С - коэффициент мощности; S - заметаемая площадь; р-плотность воздуха; О3 - скорость ветра.

К категории нетрадиционных возобновляемых источников энергии (НВИЭ), которые также часто называют альтернативными, принято относить несколько не получивших пока широкого распространения источников, обеспечивающих постоянное возобновление энергии за счет естественных процессов. Это источники, связанные с естественными процессами в литосфере (геотермальная энергия), в гидросфере (разные виды энергии Мирового океана), в атмосфере (энергия ветра), в биосфере (энергия биомассы) и в космическом пространстве (солнечная энергия).

Среди несомненных достоинств всех видов альтернативных источников энергии обычно отмечают их практическую неисчерпаемость и отсутствие каких-либо вредных воздействий на окружающую среду. Хотя второй из этих тезисов ныне оспаривают не только отдельные географы и экологи, но и эксперты ООН, никто не отрицает, что они могли бы сыграть определенную роль в укреплении энергетической и экологической безопасности многих стран. Действительно, использование НВИЭ способствовало бы сбережению органических видов топлива и соответственно уменьшению поступления продуктов их сгорания в атмосферу, снижению объемов перевозок этих видов топлива (а следовательно, и транспортных расходов), рационализации топливно-энергетических балансов и др.

Однако на пути широкого использования НВИЭ существует и немало серьезных препятствий, прежде всего технико-экономического характера. Это крайнее непостоянство большинства таких источников энергии во времени и в пространстве, малая плотность потоков энергии, с чем непосредственно связаны высокая капиталоемкость строительства и себестоимость энергии, длительные сроки строительства, значительная степень разного рода рисков.

В целом баланс положительных и отрицательных факторов использования НВИЭ пока можно охарактеризовать как складывающийся с перевесом факторов второй группы. Показательно, что наибольший интерес к ним стали проявлять в период мирового энергетического кризиса 1970-х гг., когда цены на традиционные энергоносители резко поднялись. В 1981 г. в Найроби (Кения) состоялась специальная конференция ООН, на которой была принята мировая «Программа действий по использованию новых и возобновляемых источников энергии». Однако после того, как традиционные энергоносители снова подешевели, интерес к альтернативным значительно снизился. В настоящее время их доля в мировом топливно-энергетическом балансе не превышает 1 %. Только в очень немногих странах и регионах, где отсутствуют запасы органического топлива и ресурсы гидроэнергии, но имеются благоприятные условия для использования альтернативных источников энергии, доля их в таких балансах оказывается значительной. В остальных же странах и регионах они имеют сугубо местное значение, снабжая энергией мелких и территориально рассредоточенных потребителей.

Однако нельзя не учитывать и того, что за последние два десятилетия в мире был достигнут значительный прогресс в повышении экономичности использования нетрадиционных источников энергии. Так, существенно снизились затраты на строительство ветровых и солнечных электростанций, что повысило их конкурентоспособность даже в сравнении с обычными ТЭС, работающими на органическом топливе. В свою очередь, это стало возможным в результате разработки принципиально новых технологий использования альтернативных источников энергии. Большое значение имеет также проводимая в США, Японии, Китае, Индии, во многих странах Западной Европы политика стимулирования их использования. Она обычно предусматривает налоговые льготы на разработку оборудования, предоставление кредитов – государственных и частных, принятие специальных законодательных актов. Исходя из этого и прогнозы дальнейшего использования этих источников энергии относительно оптимистичны. Так, по оценке Мирового энергетического совета (МИРЭС), в 2020 г. даже при минимальном варианте прогноза они могут обеспечить выработку 540 млн тут (в нефтяном эквиваленте) и составить 3–4 % мирового потребления топлива и энергии. А при максимальном варианте эти показатели возрастут предположительно до 1350 млн тут и8-12 %.

Источники геотермальной энергии отличаются не только неисчерпаемостью, но и довольно широким распространением: ныне они известны более чем в 60 странах мира. Но сам характер использования этих источников во многом зависит от их природных особенностей.

Низко– и среднетемпературные «подземные котлы» (с температурой до 150 °C) используют в основном для обогрева и теплоснабжения: природную горячую воду по трубам подают к жилым, производственным и общественным зданиям, теплицам, оранжереям, плавательным бассейнам, водолечебницам и т. д. Термальные воды используют для прямого обогрева во многих странах зарубежной Европы (Франция, Италия, Венгрия, Румыния), Азии, (Япония, Китай), Америки (США, страны Центральной Америки), Океании (Новая Зеландия). Но, пожалуй, наиболее ярким примером такого рода может служить Исландия.

В этой стране, практически лишенной других источников энергии, пресные термальные воды начали осваивать еще в конце 1920-х гг., но первая в мире крупная система геотермального водоснабжения вступила тут в строй только в конце 1950-х гг. Горячую воду из почти ста глубоких скважин по специальной теплотрассе подают в столицу страны – Рейкьявик и соседние поселения. Ею отапливают жилые и общественные здания, промышленные предприятия, оранжереи и в особенности теплицы, полностью обеспечивающие потребности жителей в огурцах и помидорах и снабжающие их яблоками, дынями и даже бананами.

Высокотемпературные (более 150 °C) термальные источники, содержащие сухой или влажный пар, выгоднее всего использовать для приведения в движение турбин геотермальных электростанций (ГеоТЭС).

Первая промышленная ГеоТЭС была построена в итальянской провинции Тоскана, в местечке Лардерелло около Пизы, в 1913 г. Затем в Италии стали работать и другие небольшие ГеоТЭС. В 1920-х гг. начали строить ГеоТЭС в Японии, в 1950-х – в Новой Зеландии и Мексике, в 1960-х – в США, в 1970-х – в Китае, Индонезии, Турции, Кении, Сальвадоре, на Филиппинах, в 1980-х – в ряде стран Центральной Америки, в 1990-х – в Австралии. Соответственно и суммарная мощность ГеоТЭС стран мира возрастала следующим образом (в тыс. кВт): в 1950 г. – 240, в 1960 г. – 370, в 1970 г. – 715, в 1980 г. – 2400, в 1990 г. – 8770. Число стран, имеющих ГеоТЭС, уже превышает 20.

До недавнего времени внеконкурентное первое место по количеству (около 20) и мощности (более 3,2 млн кВт) ГеоТЭС занимали США. В этой стране геотермальные электростанции работают в штатах Юта, Гавайи, но большинство их находится в северной части Калифорнии, в Долине гейзеров. Однако с начала 1990-х гг. разработки геотермальных источников в США явно замедлились, почти прекратилась практика предоставления разного рода льгот производителям и потребителям геотермальной энергии. К тому же ГеоТЭС в Долине гейзеров пострадали от падения внутреннего давления и уменьшения поступления горячего пара. Так что в последнее время строительство новых ГеоТЭС в стране не происходило.

Вторым мировым лидером в области геотермальной электроэнергетики стали Филиппины, которые уже в 1995 г. имели несколько ГеоТЭС мощностью 2,2 млн кВт и ныне, по-видимому, по этому показателю уже обогнали США. Первая ГеоТЭС была сооружена здесь в 1977 г. (с помощью иностранного капитала). Согласно расчетам, к 2000 г. геотермальные электростанции этой страны должны были удовлетворять до 30 % ее потребности в электроэнергии. Далее по размерам производства электроэнергии на ГеоТЭС следуют Мексика, Италия и Япония.

Среди ученых нет единого мнения о перспективах развития геотермальной электроэнергетики. Одни считают эти перспективы довольно ограниченными, исходя из того, что на Земле (в том числе и при помощи космических снимков) разведано лишь около ста «горячих точек» конвективного выхода глубинного тепла Земли. Другие, напротив, оценивают эти перспективы весьма высоко. Можно добавить, что главным координатором работ в этой области служит Международная геотермальная ассоциация, периодически созывающая свои симпозиумы.

Использование энергии ветра началось, можно сказать, на самом раннем этапе человеческой истории.

«Ветер служил человечеству с той поры, – пишут американские экологи супруги Ревелль, – как первобытные люди впервые подняли парус над хрупким челноком, выдолбленным из цельного бревна. Преобладающие западные ветры были той силой, которая обеспечила открытие Нового Света и несла испанскую армаду от победы к победе. Пассаты надували паруса больших клиперов и помогли открыть Индию и Китай для торговли с Западом». Они же упоминают о том, что древние персы использовали силу ветра для размола зерна, и о том, что в средневековой Голландии ветряные мельницы служили не только для размола зерна, но и для откачки воды с польдеров. В середине XIX в. в США был изобретен многолопастной ветряк, использовавшийся для подъема воды из колодцев. Но получать при помощи ветра электроэнергию первыми научились датчане в 1890 г.

Технологические основы современной ветроэнергетики разработаны уже достаточно хорошо.

Пока наибольшее распространение получили малые и средние ветроэнергетические установки (ВЭУ) мощностью от 100 до 500 кВт. Но уже началось серийное производство ветротурбин мощностью от 500 до 1000 кВт. Их ротор имеет диаметр от 35 до 80 м, а высота башни достигает 90 м. Малые ветроустановки обычно используют для автономной работы (например, на отдельной ферме), а более крупные чаще концентрируют на одной площадке, создавая так называемую ветровую ферму. Самым крупным производителем ветродвигателей была и остается Дания, за которой следуют Германия, США, Япония, Великобритания, Нидерланды.

В последние два десятилетия ветроэнергетика развивалась более высокими темпами, чем энергетика, использующая остальные виды НВИЭ. Отсюда и значительный рост мощностей ветроустановок в мире. В 1981 г., когда началось их применение в американском штате Калифорния, общая их мощность составляла всего 15 тыс. кВт. К 1985 г. она возросла до 1,1 млн, к 1990 г. – до 2 млн, к 1995 г. – до 5 млн (все такие установки давали тогда 8 млрд кВт ч электроэнергии), а к 2000 г. – до 13 млн кВт. Согласно некоторым прогнозам, в 2006 г. она может достигнуть 36 млн кВт.

География мировой ветроэнергетики претерпела довольно существенные изменения. До середины 1990-х гг. по суммарной мощности ВЭУ (или ветроэлектростанций – ВЭС) первое место занимали США: в 1985 г. на эту страну приходилось 95 %, да и в 1994 г. – 48 % всех мировых мощностей. Почти все они сконцентрированы здесь в штате Калифорния, где находятся и самые крупные в стране отдельные ветро-электростанции и самые большие «ветровые фермы» (на одной из них размещено около 1000 ВЭУ, так что ее суммарная мощность превышает 100 тыс. кВт). Кроме того, такие установки работают в штатах Нью-Мексико, Гавайи, Род-Айленд, ведется или намечается их сооружение и в нескольких других штатах.

Однако во второй половине 1990-х гг. мировое лидерство в ветроэнергетике перешло к Западной Европе, где уже в 1996 г. было сосредоточено 55 % мировых мощностей ветроэнергетических установок. Ветроэлектростанции уже работают в 14 странах Западной Европы, причем в первую их пятерку входят Германия, Дания, Нидерланды, Великобритания и Испания, но определяющая роль принадлежит двум первым из них.

До начала 1990-х гг. европейское первенство удерживала страна – родоначальник ветроэнергетики– Дания. Тем не менее во второй половине 1990-х гг. Дания уступила его Германии, мощности ветроустановок которой в 1999 г. достигли 4 млн кВт, а выработка электроэнергии на них – б млрд кВт ч. К тому же в отличие от Дании, где преобладают мелкие автономно работающие установки, для Германии более характерны крупные «ветровые фермы». Больше всего их на самом «продуваемом» участке ее территории – побережье Северного моря в пределах земли Шлезвиг-Гольштейн. В 2005 г. здесь была введена в строй крупнейшая в мире ВЭУ, которая ежегодно производит 17 млн квт-ч электроэнергии.

В целом еще в середине 1990-х гг. ветроэнергетические установки Западной Европы обеспечивали бытовые потребности в электроэнергии примерно 3 млн человек. В рамках ЕС была поставлена задача к 2005 г. увеличить долю ветроэнергетики в производстве электроэнергии до 2 % (это позволит закрыть угольные ТЭС мощностью 7 млн кВт), а к 2030 г. – до 30 %.

Из других стран мира, имеющих перспективы для развития ветроэнергетики, можно назвать Индию, Китай и Японию в Азии, Канаду в Северной Америке, Мексику, Бразилию, Аргентину, Коста-Рику в Латинской Америке, Австралию. Но настоящий рывок в этой сфере в 1990-е гг. предприняла только Индия, которая, с одной стороны, испытывает дефицит традиционных видов топлива, а с другой – обладает значительным потенциалом ветроэнергетических ресурсов, обусловленным муссонной циркуляцией воздушных масс в сочетании с особенностями строения рельефа страны. В результате осуществления большой государственной программы строительства ВЭУ, рассчитанной на привлечение иностранного капитала, Индия по их суммарной мощности уже обогнала Данию и вышла на третье место в мире после США и Германии.

Хотя солнечную энергию использовали для обогрева домов еще в Древней Греции, зарождение современной гелиоэнергетики произошло только в XIX в., когда был сконструирован солнечный коллектор для подогрева воды, а становление ее – уже в XX в. Наиболее благоприятные условия для широкого использования солнечной энергии существуют на территориях, расположенных южнее 50-й параллели. Что же касается самого ее преобразования в тепловую или электрическую энергию, то его можно осуществлять при помощи трех технико-технологических способов.

Первый способ, который получил наиболее широкое распространение, – это теплоснабжение с использованием солнечных коллекторов-водонагревателей, которые неподвижно устанавливают на крышах домов под определенным углом к горизонту. Они обеспечивают нагрев теплоносителя (вода, воздух, антифриз) на 40–50 °C по сравнению с температурой окружающей среды. Их применяют также для кондиционирования воздуха, сушки сельскохозяйственных продуктов, опреснения морской воды и др. Больше всего таких установок теплоснабжения имеют США и Япония, но самая высокая плотность их из расчета на душу населения достигнута в Израиле и на Кипре. Так, в Израиле 800 тыс. солнечных коллекторов обеспечивают горячей водой 70 % жителей этой страны. Солнечные коллекторы применяются также в Китае, Индии, ряде стран Африки (преимущественно для привода в действие насосных установок) и Латинской Америки.

Второй способ заключается в преобразовании солнечной энергии уже не в тепловую, а в электрическую, причем «напрямую» – при помощи фотоэлектрических установок (солнечных батарей) на кремниевой основе – наподобие тех, которые устанавливают на космических аппаратах. Первая такая электростанция была сооружена в Калифорнии в 1981 г., а затем они появились и в других регионах США, и в других странах. Хотя получаемая при их помощи электроэнергия продолжает оставаться еще весьма дорогой (30 центов за 1 кВт ч), наиболее богатые страны уже развернули широкую кампанию за установку солнечных батарей на крышах и фасадах домов. Лидерство в этом деле захватила Япония, которая контролирует также около 1/3 мирового рынка фотоэлектрических элементов. Но и Германия уже приступила к осуществлению программы под названием «1000 крыш и фасадов», а в США в 1997 г. тогдашний президент страны Клинтон провозгласил программу «Миллион крыш».

Наконец, третий способ, также обеспечивающий превращение солнечной энергии в электрическую, реализуется при помощи сооружения собственно солнечных электростанций (СЭС), которые подразделяются на два типа – башенные и параболические.

В 1970-х – начале 1980-х гг. башенные СЭС были построены в США, Японии, Испании, Италии, во Франции, в СССР, но затем они были остановлены из-за неконкурентоспособности. Однако опыт, накопленный при их эксплуатации, позволил начать проектирование нового поколения таких СЭС. На мировом «солнечном саммите», проведенном в середине 1990-х гг., была разработана Мировая солнечная программа на 1996–2005 гг., имеющая глобальные, региональные и национальные разделы.

Биомасса также представляет собой особый класс энергоресурсов, включающий в себя древесину, отходы лесной и деревообрабатывающей промышленности, растениеводства и животноводства. Когда биомассу относят к НВИЭ, то имеют в виду не прямое ее сжигание, например в виде дров или навоза, а газификацию и пиролиз, биологическую переработку с целью получения спиртов или биогаза. Для этой цели в зависимости от сельскохозяйственной специализации той или иной страны обычно используют отходы сахарного тростника, рисовую шелуху, стебли кукурузы, хлопчатника, скорлупу кокосовых, земляных и других орехов, а также навоз. Производство биогаза, хотя и полукустарными способами, получило наибольшее развитие в Китае, где насчитывают миллионы биогазовых установок, рассчитанных на одну семью. Быстро растет число таких установок в Индии. Есть они также в странах Юго-Восточной Азии, Центральной Америки, СНГ.

Крупнейший в мире производитель этилового спирта – Бразилия. С целью замены импортной нефти здесь в 1970-х гг. была разработана, а затем осуществлена в широких масштабах специальная программа «Этанол», предусматривавшая создание специальных плантаций сахарного тростника, из которого получают этиловый спирт, сооружение в сельской местности 280 дистилляционных заводов. Теперь значительная часть автопарка страны работает либо на чистом этаноле, либо на спирто-бензиновых смесях.

К альтернативным источникам энергии можно отнести также синтетическое горючее. В качестве сырья для его получения обычно рассматривают каменный и бурый уголь, горючие сланцы, битуминозные песчаники и биомассу.

Опыт получения синтетической нефти при помощи гидрогенизации угля имелся еще в Германии 1930-х гг. После начала энергетического кризиса многие страны Запада разработали обширные программы получения синтетического горючего из угля при помощи этого способа. То же относится и к газификации угля. Только в США, согласно энергетической программе президента Форда, намечалось построить 35–40 заводов по переработке угля в горючий газ. Но большинству этих программ не суждено было сбыться. Когда нефть снова подешевела, они потеряли актуальность. Жидкое горючее из угля в промышленных масштабах получает только ЮАР, где в 1980-х гг. оно наполовину удовлетворяло потребности страны в автомобильном топливе.

Крупнейшими ресурсами горючих (битуминозных) сланцев обладают страны СНГ, Эстония, США, Бразилия, Китай. По данным МИРЭК, из уже разведанных и доступных для извлечения запасов этих сланцев можно получить 40–50 млрд т нефти, что сравнимо с запасами зоны Персидского залива! Но в промышленных масштабах получение «сланцевой» нефти пока не практикуется.

То же можно сказать и об использовании битуминозных песчаников, запасы которых особенно велики в Канаде, Венесуэле и Колумбии. В Канаде они залегают на площади 75 тыс. км 2 в бассейне р. Атабаска (провинция Альберта). Подсчитано, что они содержат до 130 млрд т нефти, из которых доступны для извлечения 30–40 млрд т. В начале 1970-х гг. здесь были созданы мощности, позволявшие получать несколько миллионов тонн нефти. Но этот эксперимент не был продолжительным. Помимо высокой себестоимости такой нефти, сказалась и угроза состоянию окружающей среды. В Венесуэле, в так называемом поясе Ориноко, запасы тяжелой нефти, содержащейся в песчаниках, оцениваются в 185 млрд т, извлекаемые – в 40 млрд т. Их используют для получения смеси битума и воды, которую применяют как топливо.

Россия обладает большими ресурсами практически всех видов нетрадиционных возобновляемых источников энергии. Их экономически оправданный потенциал, предназначенный для первоочередного освоения, составляет в общей сложности 275 млн т условного топлива в год, т. е. примерно 1/4 годового потребления энергетических ресурсов в стране (в том числе геотермальная энергия – 115 млн тут, энергия биомассы – 35 млн, энергия ветра– 10 млн, солнечная энергия – 13 млн тут). Однако доля используемых НВИЭ в стране незначительна – всего 1 %, а ежегодное замещение органического топлива всеми их видами составляет 1,5 млн тут. В России как в стране очень богатой органическим топливом и гидроэнергией в течение длительного времени основное внимание традиционно уделялось крупнейшим и крупным энергетическим объектам. В условиях же хронического дефицита материально-финансового обеспечения трудно предвидеть их развитие в ближайшем будущем. Исключение составляет обширная зона Севера России, где более 70 % территории с населением в 20 млн человек образуют особый регион децентрализованного энергоснабжения. Вот почему федеральная программа «Энергообеспечение северных территорий в 1996–2000 гг.» предусматривала частичную замену доставляемого сюда органического топлива местными альтернативными источниками энергии. Энергетическая стратегия России исходит из того, что в 2010 г. НВИЭ будут удовлетворять 1 % потребностей страны в энергии.